

Green Global Movement and Global Souths Development Dilemma: Case of Brazil, India, and South Africa

Marendra Athallah Farras Majid

Department of International Relations, Faculty of Graduate School, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia

Correspondence Address: marendamajid@gmail.com

Abstract

This study examines the challenges and structural intricacies of sustainable development in the Global South, with an emphasis on Brazil, India, and South Africa. Although these nations have considerable renewable energy potential and natural resources, their green development paths are inconsistent due to ongoing governance deficiencies, policy discrepancies, and socio-economic inequalities. The research employs a qualitative comparative approach to illustrate how external demands from the global green movement, mostly influenced by Global North agendas, frequently conflict with local realities, hence strengthening reliance and constraining developmental autonomy. The results indicate that although there are advancements in renewable energy adoption and conservation policy, the overall green transition is hindered by institutional fragmentation and the historical legacies of extractivism. Therefore, the green development in the Global South necessitates a reevaluation of global sustainability frameworks to align with regional contexts and aspirations. The study enhances current discussions by providing a refined comprehension of structural imbalances in global environmental governance.

Keywords : *Development Dilemma, Green Development, Global South*

Abstrak

Kajian Penelitian ini mengkaji tantangan dan kompleksitas struktural dalam pembangunan berkelanjutan di kawasan Global South, dengan fokus pada Brasil, India, dan Afrika Selatan. Meskipun ketiga negara ini memiliki potensi besar dalam energi terbarukan serta sumber daya alam yang melimpah, jalur pembangunan hijau mereka masih menunjukkan ketidakkonsistenan akibat kelemahan tata kelola, ketimpangan kebijakan, dan ketidaksetaraan sosial-ekonomi yang terus berlangsung. Penelitian ini menggunakan pendekatan kualitatif komparatif untuk menunjukkan bagaimana tekanan eksternal dari gerakan hijau global yang sebagian besar didorong oleh agenda Global North, sering kali berbenturan dengan realitas lokal, sehingga memperkuat ketergantungan dan membatasi

kemandirian pembangunan. Hasil penelitian ini menunjukkan bahwa meskipun terdapat kemajuan dalam adopsi energi terbarukan dan kebijakan konservasi, transisi hijau secara menyeluruh masih terhambat oleh fragmentasi institusional dan warisan historis dari model pembangunan ekstraktif. Artikel ini berargumen bahwa pengembangan hijau yang signifikan di Global South memerlukan peninjauan kembali terhadap kerangka keberlanjutan global agar lebih selaras dengan konteks dan aspirasi regional. Dengan demikian, studi ini memperkaya diskursus akademik saat ini dengan memberikan pemahaman yang lebih tajam terhadap ketimpangan struktural dalam tata kelola lingkungan global.

Kata Kunci : *Dilema Pembangunan, Pembangunan Hijau, Negara-Negara Selatan*

1. Introduction

Fenomena The green global movement, as a fundamental element of the Sustainable Development Goals (SDGs), has progressively influenced the current model of global development. In this perspective, nations of the Global South, especially Brazil, India, and South Africa, seem to hold a strategic edge owing to their substantial green energy potential. This resource riches seemingly offers a significant opportunity to expedite sustainable development in these areas. Nonetheless, despite the evident advantages, the revolutionary potential of green development remains unfulfilled. The gap between potential and execution indicates that the green transition is predominantly aspirational, with actual development being constrained and inconsistent.

Comprehending the rise of the green global movement as a manifestation of hegemonic power in global development necessitates an analysis of the integration of environmental mandates with the dominant political and economic framework. The discussion over the green economy, frequently portrayed as a route to sustainability, actually embodies a Gramscian "passive revolution," in which entrenched capitalist interests are maintained under the pretense of ecological transformation (Samal, 2019; Wanner, 2015) This process often involves the commercialization and marketization of nature, resulting in the depoliticization of sustainability and the reinforcement of neoliberal governance structures. Although these efforts seek to shift development towards renewable energy and accessible infrastructure, their operational framework often perpetuates existing hierarchies of power, wealth, and access. The green

movement, despite its progressive intentions, may serve as a tool of soft power that perpetuates current global inequalities, unless counter-hegemonic networks effectively redirect the discourse and practice of sustainability towards truly democratic and liberating results (Bullard & Müller, 2012; Dyer, 2011; Smith, 2014)

The Global South, which includes nations in Africa, Asia, and Latin America, is abundantly equipped with natural resources that has significant potential for fostering equitable economic growth. The advantages obtained from these resources differ significantly due to variations in governing capabilities, institutional structures, and technology progress. Some nations have utilized their resource richness to bolster productive sectors like agriculture, manufacturing, and services, while others are hindered by the structural weaknesses linked to resource dependency. This paradox is obvious in the experiences of Brazil, India, and South Africa. Brazil has leveraged its agricultural resources and agro-processing capacities; nonetheless, it still has governance issues that hinder its overall economic potential (Hassan et al., 2025; T. Li et al., 2023). In contrast, India has advanced in diversifying its economy and fostering sustainable practices, although infrastructure and policy deficiencies remain (Deng et al., 2022; Ogwu et al., 2025) South Africa's economy is primarily based on mining and cattle production; nevertheless, it has challenges related to corruption, inequality, and erratic policy implementation (Meissner et al., 2013; Shaw, 2015). These instances demonstrate that mere resource abundance does not ensure favorable development outcomes. Despite vast resource endowments, nations in the Global South, including Brazil, India, and South Africa, have not successfully converted their natural resources into widespread economic prosperity. The continuation of the resource curse is apparent in their challenges with economic disparity, inadequate resource management, and inconsistent growth results (Deng et al., 2022; T. Li et al., 2023)

Therefore, it is clear that green growth in the Global South, especially in Brazil, India, and South Africa, poses a unique challenge. Although these countries possess significant potential for promoting sustainable growth, they have structural and systemic constraints that hinder the achievement of such development. This study aims to rigorously analyze the green development problem in these three nations, investigating the tensions between opportunity and constraint that influence their transition to sustainability.

Literature Review

To comprehensively analyze the intricate dynamics of green development in the Global South, especially in resource-abundant countries like Brazil, India, and South Africa, it is crucial to scrutinize the current academic discourse that contextualizes the interaction between global environmental agendas and the structural, economic, and governance realities in these areas. Global green development is a framework aimed at reconciling economic progress with environmental sustainability; nonetheless, its execution in the Global South entails intricate challenges. Countries in the Global North have advocated for solutions like green growth and degrowth to mitigate ecological destruction. These transitions frequently result in unforeseen macroeconomic repercussions for the Global South, such as GDP contraction, diminished employment, and declining trade balances, highlighting the structural weaknesses of resource-dependent economies (Fevereiro & Lowe, 2025).

Concurrent fast urbanization and industrialization in the Global South which exacerbated by demographic pressures and resource consumption, have resulted in considerable environmental damage. Mitigating these pressures necessitates instruments like biomonitoring approaches that evaluate ecological threats and guide sustainable development (Babafemi et al., 2024). Furthermore, whereas mineral extraction is essential for economic advancement, it often exacerbates social inequality and environmental degradation, prompting worries regarding long-term sustainability (J. Yang & Koondhar, 2024).

In the face of these obstacles, green growth policies present opportunities for technological leapfrogging, enabling nations to circumvent polluting industrial stages and transition directly to cleaner alternatives. However, there is still an absence of extensive research regarding the tangible effects of such policies on emerging nations, especially in light of their increasing emissions (Herman, 2023). The concept of a green economy which promoting poverty alleviation while achieving environmental objectives which is under heightened examination, particularly as most models exhibit Global North biases and may not correspond with local conditions in the Global South (Bergius & Buseth, 2019).

Renewable energy and foreign direct investment (FDI) are two fundamental elements with transformative potential. Renewable energy has demonstrated efficacy in reducing emissions while fostering economic advancement (Boubaker & Omri, 2022). Similarly, foreign direct investment (FDI) can provide technological advancements and capital inflows; nevertheless, if unregulated, it poses a risk of intensifying environmental damage (F. Li et al., 2022; Naz et al., 2019). These dynamics underscore the imperative for comprehensive policy formulation.

A fair green transition necessitates the Global North to reduce consumption and the Global South to reform its development path. Policies should emphasize the implementation of renewable energy, regulatory reforms, and accessibility to green finance (Ali et al., 2023; Barua & Aziz, 2021). Equitable realization of global green development promises across the South can only be achieved through context-sensitive strategies.

Nonetheless, a significant gap persists in the literature regarding the green development dilemma in the Global South, especially with a concentrated analysis of Brazil, India, and South Africa. This gap is presented by the analysis by the Vos Viewer below.

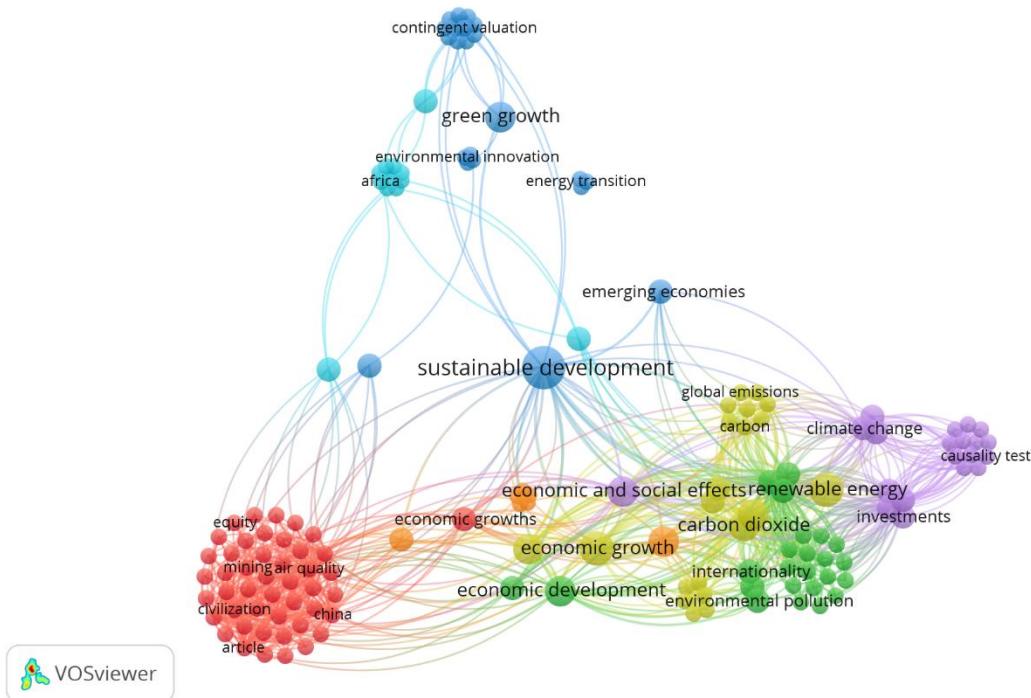


Figure 1. Vos Viewer Analysis of The Study Gap (Author Analysis, 2025)

This study seeks to fill that gap by delivering a detailed examination of these countries, therefore contributing uniquely to the current literature on sustainable development.

2. Methods

This study used a qualitative research design to investigate the challenges of green development in the Global South, focusing specifically on Brazil, India, and South Africa.

The study employs secondary data derived from peer-reviewed literature indexed in Scopus, guaranteeing academic rigor and relevance. The selection procedure prioritized research on green energy transitions, institutional governance, socio-environmental disparities, and resource management in the Global South.

The data were carefully evaluated utilizing the Miles and Huberman model, a recognized paradigm for qualitative data analysis. This methodology has three

fundamental steps: data reduction, data presentation, and conclusion formulation/validation (B. Miles et al., 2014). During the data reduction step, thematically pertinent information was extracted from an extensive array of scholarly sources. Identified and categorized were key issues including environmental deterioration, policy fragmentation, governance shortfalls, and innovation shortages. During the data presentation phase, these themes were delineated to elucidate the structural challenges of green development in Brazil, India, and South Africa. Ultimately, during the conclusion phase, patterns and discrepancies across the three countries were analyzed to comprehend the reasons why green development remains aspirational rather than actualized.

4. Results

This study's findings indicate that green growth in the Global South, especially in Brazil, India, and South Africa, embodies a profound conflict between ecological ambitions and socio-economic conditions. Despite their abundant green energy resources, these countries face structural challenges that impede the successful realization of sustainable development. In Brazil, the conflict between promoting a bioeconomy and ongoing deforestation highlights the dichotomy between economic growth and environmental management (La Rovere, 2020). India's increasing investment in renewable energy faces obstacles because of its structural reliance on fossil fuels and disjointed institutional coordination (T. Li et al., 2023). In South Africa, entrenched socio-economic disparities, a remnant of apartheid, are exacerbated by its reliance on coal, resulting in an uneven and restrictive green transition (Elbra, 2013; Kararach, 2024)

The findings across all three contexts indicate that governance flaws, policy fragmentation, and an absence of coherent strategic planning hinder the effective realization of the green transition. Despite the implementation of diverse frameworks and regulations by each nation to promote low-carbon trajectories, these initiatives are inadequate to challenge the dominant growth paradigms established by extractive industries and fossil-fuel-dependent infrastructures (Deng et al., 2022; Hassan et al., 2025)

Moreover, the global green movement, predominantly orchestrated by institutions in the Global North, has imposed further pressures on the Global South to adhere to externally imposed sustainability standards, while failing to sufficiently address the historical inequities inherent in global trade and environmental governance (Fevereiro & Lowe, 2025). This mismatch exacerbates economic

vulnerabilities and amplifies disparities in green development results. The primary issue resides not only in technological or financial capabilities but also in the political will and institutional coherence required to realign national development plans for a fair and inclusive ecological transition

3. Results And Discussion

The Rising of Green Hegemony

The development of the green global movement into a dominant force in international environmental politics illustrates a path characterized by strategic change, political integration, and transnational coordination. The movement initially arose in a disjointed and responsive manner, grappling with the entrenched interests of the fossil fuel economy, particularly those linked to prevailing financial systems like Wall Street. The initial emphasis on micro-level emissions and individual actions distracted from systemic factors contributing to climate change, so constraining the movement's ability to effect structural change (Pettifor, 2022). The absence of coherence and systematic involvement undermined its initial validity and impact on policy.

A pivotal moment transpired with the establishment of the British Green New Deal in 2008. This approach offered a fundamental redefinition of environmental activism by associating ecological sustainability with economic restructuring, thus reestablishing the green movement as a significant participant in both economic and environmental discussions (Pettifor, 2022). The creation of analogous frameworks in other national contexts, such as Canada's Pact for a Green New Deal, underscored the global dissemination of these concepts. In Canada, grassroots and civil society organizations united around a common vision for climate justice and infrastructure reform, showcasing a developed degree of organizational coordination and strategic alignment (MacArthur et al., 2020).

The incorporation of the green movement into political institutions, especially in Western Europe, has reinforced its position as a dominant force. Organizations like the German Greens have achieved parliamentary representation and significantly influenced national policy, promoting the cessation of nuclear energy and the enhancement of renewable energy systems (Rovinskaya, 2015). This success is not singular; green parties throughout Europe have consistently augmented their

influence by integrating environmental issues into mainstream political discourse, so bolstering their legislative and normative authority (Rovinskaya, 2015).

The green movement has utilized international networks to enhance its scope and unity beyond national contexts. Organizations like Friends of the Earth and the World Wide Fund for Nature have expanded their missions to include social justice and sustainable development, creating international coalitions to address environmental degradation transnationally (Rootes, 2006). These alliances function as venues for knowledge exchange and tools for collective action and lobbying, so enhancing the movement's influence in defining global environmental governance (Doyle & Doherty, 2006).

Significantly, the global green movement has adopted a counterhegemonic stance, contesting the prevailing neoliberal worldview and advocating for alternative measures of well-being and prosperity. Through interconnected resistance and international solidarity, environmental advocates have cultivated novel modes of political participation that surpass national borders, aiding in the reorganization of global climate governance (Smith, 2014, 2016). These counterhegemonic coalitions have intensified critiques of environmentally detrimental capitalism and have presented liberatory narratives that promote ecological equilibrium and intergenerational equity.

The evolution of the green global movement into a dominant force is contingent upon its capacity to adapt, institutionalize, and globalize. Through the resolution of fragmentation, integration into political frameworks, and the establishment of robust networks, the movement has redefined its role as a pivotal participant in the battle against climate collapse. This dominant role now confronts conventional power systems and transforms global political discussions on sustainability and fairness.

Despite being rooted in the pressing need for planetary sustainability, the green global movement has created complicated dynamics for nations in the Global South, forcing them to adopt green transitions that are primarily conceived in the Global North. However, there are social, political, and economic repercussions to this alignment. Many developing economies continue to be disadvantaged by global trade patterns, which have been exacerbated by the worldwide push for decarbonization and sustainability measures, ranging from green growth to degrowth. In particular, the Global North's move toward green policies has caused noticeable economic

contractions in the South, which are shown by worsened trade balances, dropping GDP, and fewer job prospects (Fevereiro & Lowe, 2025). This derives from a long-standing reliance on the export of raw materials and an industrial structure that depends on imports, which restricts the ability of economies in the Global South to autonomously reorganize their productive systems in accordance with green imperatives.

Existing global imbalances are often reinforced by the ideological framing of the green economy itself. The green agenda, which is frequently driven and controlled by Northern states and organizations, nonetheless reflects developmental assumptions and technical fixes that don't necessarily match Southern reality. Without altering the fundamental relationships of dependency and inequity, these externally imposed models run the risk of replicating aspects of the fossil economy under a greener guise (Brown et al., 2014). In certain cases, this takes the form of "green colonialism," in which the global trade in clean hydrogen or circular economy strategies lead to the exploitation of resources from the Global South while Northern actors disproportionately benefit (Dejonghe & Van de Graaf, 2025; Fevrier, 2022). Such advancements worsen environmental injustices worldwide in addition to maintaining unequal growth.

This transformation is made more difficult by the political climate in Southern countries. Environmental movements are frequently marginalized and institutional support for ecological governance is weakened in nations like Bangladesh where national objectives frequently place a higher priority on quick economic development than environmental sustainability (Haque et al., 2025). In a similar vein, there have been major obstacles to the adoption of green transitions in African nations. These include limited public compliance, opposition from influential interest groups, and insufficient institutional capacity, all of which have their roots in the historical, political, and economic trends that have shaped environmental governance (Graham, 2025).

Thus, the green global movement has sparked revolutionary dialogue and action, but it also imposes unbalanced demands that call for careful consideration. Instead of being a passive recipient of this change, the Global South must actively negotiate its role by striking a balance between national interests, historical justice, developmental autonomy, and global needs.

“Resource Curses” in Global Souths: A Case Brazil, India, and South Africa

The Global South possesses an abundance of natural resources, encompassing energy minerals, forest products, and renewable biological elements. Nonetheless, despite their prevalence, these resources frequently remain underexploited or mismanaged, leading to lost chances for sustainable development. A significant barrier to effective resource exploitation is the ongoing technological and infrastructure deficiencies prevalent in much of the Global South. Numerous countries possess insufficient capacity to enhance the value of raw materials via local downstream processing, resulting in a dependence on the export of unrefined resources (Chen et al., 2025). The technical disparity, along with inadequate supply chain efficiency and deficient resource management systems, constrains economic production and intensifies instability in resource-abundant areas (T. Li et al., 2023). Research reveals that, even among growing economies such as those in the BRICS group, the efficiency of natural resource utilization is crucial for the achievement of green economic recovery (Zhao & Rasoulinezhad, 2023).

Environmental degradation is a continual result of inefficient resource consumption. Overexploitation of biological resources frequently leads to habitat fragmentation, pollution, and ecological degradation (Iyiola & Ogwu, 2025). The environmental repercussions not only weaken ecological resilience but also jeopardize the livelihoods of those reliant on these ecosystems. Numerous bioenergy initiatives aimed at promoting sustainable goods have led to social externalities, including land displacement and the deterioration of labor rights, mainly impacting smallholder farmers and informal laborers (Iyiola et al., 2025). These socio-environmental effects underscore the paradox in which initiatives intended to foster sustainability frequently repeat or exacerbate existing imbalances.

Institutional and policy obstacles exacerbate the inefficiency in natural resource governance. Numerous African and South Asian nations, for instance, experience inadequately constructed institutional frameworks that do not facilitate effective environmental sustainability initiatives (Mpuure & Mengba, 2024). Inadequate governance frequently results in less accountability and enforcement, rendering resource management vulnerable to corruption and misappropriation. Moreover, geopolitical conflicts and political instability in areas like South Asia substantially hinder the execution of enduring sustainable plans (Cao et al., 2024; Murshed, 2024).

These circumstances deter both domestic and international investments in sustainable infrastructure, thereby hindering progress.

The dependence on natural resource rents leads to the phenomenon known as the “resource curse,” in which resource-rich countries experience diminished economic development and poorer innovative potential. Resource richness frequently hinders diversification and reinforces economic reliance rather than fostering long-term prosperity (Dong et al., 2024; T. Li et al., 2023). Consequently, initiatives for sustainable development are neglected in favor of immediate economic benefits. In China, regions reliant on resource extraction have encountered more challenges in achieving industrial green transformation (X. Yang et al., 2023).

The prevalence of extractive economies hinders the development of renewable energy systems. Research indicates that elevated resource rents may adversely impact renewable energy usage, a crucial metric of sustainable development (Han et al., 2025). Financial and political backing for clean energy is still constrained in numerous developing areas, hence diminishing the viability of shifting from fossil fuel-dependent growth models (Laumanns et al., 2004). This standstill impedes national energy transitions and disadvantages these countries in global climate negotiations and pledges.

Case of Brazil

Brazil's extensive natural resources, notably enormous forests, rich wildlife, and plentiful freshwater, uniquely situate it in global environmental discourse. However, these ecological resources have not resulted in successful, sustainable development. The nation continues to encounter significant obstacles in leveraging its natural resources in accordance with green growth objectives and climate obligations. A primary issue is Brazil's elevated deforestation rates, especially in ecologically vital areas such as the Amazon and Cerrado. Land-use alterations, propelled by agricultural development, illicit logging, and tenure disputes, have led to considerable biodiversity depletion and carbon emissions, jeopardizing conservation objectives and global climate aspirations (Cerbaro et al., 2020; Dutra et al., 2024).

Brazil's energy grid, while predominantly dependent on hydroelectric power, is progressively challenged by droughts generated by climate change. The susceptibility of hydropower to water scarcity has resulted in sporadic reversion to fossil fuels, hampering the nation's transition to green energy (Volpi et al., 2006).

Despite the illusion of water availability, Brazil confronts significant water governance challenges, including pollution, poor distribution, and socio-political disputes over access, worsened by deforestation and climate change (Ferreira et al., 2020; Phillips & Grubert, 2011).

The agriculture industry, a cornerstone of Brazil's export economy, exacerbates environmental deterioration. Overgrazing, excessive pesticide application, and inadequate land management have resulted in extensive soil erosion and degradation, jeopardizing ecological integrity and long-term food security (Oliveira et al., 2023). Governance deficiencies, such as inadequate inter-agency cooperation, political instability, and regulatory voids, hinder policy implementation and institutional reactions to environmental emergencies (Cerbaro et al., 2020).

Notwithstanding these limitations, the possibility for dramatic change persists. Brazil's incorporation of biodiversity into industrial plans through bioeconomy frameworks is a promising avenue for green economic diversification and social fairness (Santa Rita et al., 2025). Nonetheless, actualizing this promise necessitates enhanced governance, integration of science and policy, and international collaboration (Dutra et al., 2024; Favareto, 2021)

Case of India

India's plentiful natural resources, including arable land, water, minerals, and renewable energy, present significant opportunities for promoting sustainable development. The efficient use of these resources continues to pose a significant issue. Deficiencies in policy execution and insufficient technical measures have constrained the effectiveness of natural resource management initiatives. Government programs like the Solar Bidding Scheme and the National Tariff Policy have not yet realized their desired sustainability objectives, frequently necessitating significant change to enhance their practical viability (Zeng et al., 2023). Moreover, demographic pressures and inadequate environmental planning exacerbate the deterioration of land and water systems, hence further undermining ecological resilience (Banerjee & Banik, 2018; Chaudhari, 2021)

India's reliance on coal and other fossil fuels considerably obstructs its ecological transition. The nation has significant renewable energy potential, particularly in solar and wind, although advancements in this field are sometimes hindered by infrastructural constraints and insufficient investment (Manju & Sagar,

2017; Mondal et al., 2024). This dependence on high-emission energy sources intensifies CO₂ emissions and environmental deterioration, jeopardizing climate objectives (Mohamad & Ab-Rahim, 2024). The excessive application of agrochemicals in agriculture has resulted in significant soil degradation and standstill in output, underscoring the repercussions of unsustainable farming practices (Meena et al., 2017).

Institutional obstacles significantly impede India's environmental potential. Inadequate property rights, disjointed market structures, and restricted innovation capabilities have impeded the adoption of green technologies and obstructed efficient resource governance (Dong et al., 2024). Social inequalities associated with land and resource extraction exacerbate regional inequities and local discontent (Banerjee & Banik, 2018).

Case of South Africa

South Africa's extensive natural resources, comprising plentiful minerals, coal deposits, and arable land, establish a vital basis for economic development. Nonetheless, the nation's difficulty in efficiently utilizing these resources has impeded its capacity to follow a sustainable development trajectory. A significant concern is the continual export of unrefined minerals, which hinders domestic value addition, diminishes employment development, and constrains wider economic advantages (Kgoale & Odeku, 2019). This export-oriented paradigm restricts industrial development prospects and intensifies dependence on global commodities markets.

The country's reliance on coal continues to be a major obstacle to a low-carbon transition. Coal persists as the predominant component of South Africa's energy portfolio, owing to its cost-effectiveness and accessibility, especially in underprivileged areas where other sources remain unattainable (Mdluli & Vogel, 2010; Winkler & Marquand, 2009). Initiatives to transition to cleaner energy are hindered by deep-rooted socio-economic inequalities and energy instability. Furthermore, inadequate governance frameworks and disjointed institutional coordination intensify resource misuse. The remnants of apartheid have solidified inequality, and existing policies frequently lack the regulatory consistency required for ecological transformation (Falayi et al., 2021; Ronquest, 2012).

Socio-economic obstacles, such as elevated unemployment and poverty, further impede resource-oriented innovation and sustainable business (Mohamed, 2018). Consequently, South Africa continues to depend significantly on global assistance to

further its green development objectives. Despite the existence of policy frameworks like the Green Special Economic Zones and the Developmental Green Economy Strategy, implementation has been irregular, and results have not met expectations (Götz & Schäffler, 2015; Grant et al., 2020). Integrated strategies that consider the interconnected water-energy-food nexus are essential however underdeveloped due to systemic obstacles (Adom et al., 2022; Liphadzi et al., 2024). The transition to a low-carbon economy necessitates both technological innovation and a restructuring of South Africa's industrial and governmental frameworks to facilitate inclusive and sustainable development.

Given the intricate realities presented in the Global South and the specific circumstances of Brazil, India, and South Africa, it is clear that mere wealth of natural resources does not ensure sustainable development. Structural deficiencies which encompassing technological and institutional inadequacies, environmental degradation, and socio-political disparities, persist in obstructing the conversion of resource wealth into sustainable prosperity. These challenges expose a persistent pattern of extractivism, policy inconsistency, and insufficient investment in innovation, which collectively perpetuate dependency, inequality, and ecological fragility.

Green Global Movement and Development Dilemma

Despite its abundant natural resources, including minerals, forests, and renewable biological systems, the Global South encounters significant obstacles in converting this wealth into equitable and sustainable development. Initially, this resource abundance ought to establish a robust basis for sustainable economic development. Nevertheless, reality demonstrates significantly greater complexity. Rather of serving as catalysts for transformation, these resources are frequently misused, mismanaged, or confined within systems that favor immediate advantages over long-term sustainability.

The core of the issue is a continual structural disparity. Numerous nations in the Global South are deficient in the requisite infrastructure, technological competencies, and legislative frameworks to enhance the value of their raw materials (Chen et al., 2025). Consequently, they continue to rely on the exportation of unrefined commodities, so constraining prospects for domestic employment, innovation, and industrial diversification (T. Li et al., 2023). Within the BRICS group of developing

powers, the efficacy of natural resource utilization remains a pivotal factor in the success of green recovery initiatives (Zhao & Rasoulinezhad, 2023).

These structural constraints also exacerbate ecological degradation. In numerous emerging places, the overexploitation of land, deforestation, and unsustainable bioenergy production have undermined the ecological underpinnings essential for community sustenance (Iyiola & Ogwu, 2025). Although designed to advance environmental objectives, some green programs have resulted in land acquisitions, relocation, and the erosion of labor rights, particularly affecting smallholder farmers and informal laborers (Iyiola et al., 2025). These results reveal a troubling paradox: initiatives aimed at fostering sustainability may inadvertently exacerbate social and ecological disparities if not meticulously crafted and executed.

Governance is pivotal in this context. In numerous African and South Asian nations, institutional fragmentation and inadequate enforcement mechanisms have impeded advancements in sustainability (Mpuure & Mengba, 2024). Political instability, corruption, and regulatory inconsistencies hinder domestic policy effectiveness and deter international investment and collaboration (Cao et al., 2024; Murshed, 2024). In the absence of dependable and responsible governance, even the most aspirational environmental initiatives are prone to failure.

The "resource curse" complicates the situation, wherein nations abundant in natural resources face diminished economic growth, less innovation, and heightened dependence on extractive sectors (Dong et al., 2024; T. Li et al., 2023). In these situations, short-term economic gains from resource exports frequently overshadow long-term environmental and societal welfare. In China, regions dependent on resource extraction have seen more difficulties in transitioning to green industrial models (X. Yang et al., 2023).

The entrenchment of extractive economies further impedes sustainable energy transitions. Elevated revenue from resource rents frequently corresponds with diminished commitments to renewable energy, as financial and political backing tends to favor traditional sectors (Han et al., 2025). As a result, energy diversification stagnates, leaving nations lagging in the global movement towards climate objectives (Laumanns et al., 2004).

Brazil's extensive environmental resources, such as the Amazon rainforest, establish it as a global custodian of biodiversity. However, extensive deforestation,

competing land-use priorities, and ineffective governance have undermined its environmental objectives (Cerbaro et al., 2020; Dutra et al., 2024). Although hydropower predominates Brazil's energy infrastructure, climate-induced droughts and inadequate water governance jeopardize its dependability (Ferreira et al., 2020; Phillips & Grubert, 2011). Concurrently, there are encouraging developments: bioeconomy policies that include biodiversity into industrial planning may facilitate Brazil's transition to a more sustainable and inclusive model, provided there is robust governance and policy coordination (Favareto, 2021; Santa Rita et al., 2025). While India, possessing substantial solar and wind potential, is an instance of unexploited opportunity. Nonetheless, reliance on fossil fuels, fragmented policies, and inadequate infrastructure persist in hindering the nation's transition to sustainability (Mondal et al., 2024; Zeng et al., 2023). The difficulties are exacerbated by soil degradation resulting from excessive pesticide application and enduring socio-economic disparities (Banerjee & Banik, 2018; Meena et al., 2017). Addressing these disparities necessitates a multifaceted strategy that integrates legal change, the empowerment of local governance, and investments in clean technologies (Dong et al., 2024; Yu et al., 2023). Simultaneously, South Africa confronts a twofold challenge: its economic foundation is predominantly dependent on coal and raw resource exports, while entrenched inequalities and energy insecurity obstruct the execution of green policies (Kgoale & Odeku, 2019; Winkler & Marquand, 2009). Despite the existence of frameworks such as the Green Special Economic Zones, their results are limited due to institutional fragmentation and disparate capacities (Götz & Schäffler, 2015; Grant et al., 2020). Resolving these challenges necessitates cohesive water-energy-food strategies and fundamental alterations in governance and industrial frameworks (Adom et al., 2022; Liphadzi et al., 2024).

Thus, the trajectory towards sustainable development in the Global South is hindered not by a deficiency of natural resources, but by entrenched structures that restrict the management of those resources. Genuine transformation necessitates more than mere technical solutions; it requires political resolve, strategic foresight, and profound institutional restructuring. Brazil, India, and South Africa demonstrate that transformation is feasible; yet, it takes intentionality, inclusivity, and perseverance.

4. Conclusion

This study has rigorously analyzed the dynamics of the global green movement and its developmental ramifications for the Global South, specifically focusing on Brazil, India, and South Africa. Despite possessing ample natural resources, many

nations encounter enduring structural limitations, including ineffective governance, technological deficiencies, policy disunity, and socio-economic disparities, which hinder their progression towards sustainable development. The concept of green growth, while theoretically revolutionary, frequently remains aspirational in reality due to systemic constraints that favor immediate economic benefits above enduring environmental sustainability and social equality.

The findings indicate that whereas global green agendas, predominantly initiated by the Global North, provide frameworks for sustainability, their execution in the Global South encounters significant obstacles. Brazil contends with deforestation and inadequate water governance, India faces policy inconsistency and excessive dependence on fossil fuels, while South Africa grapples with coal reliance and institutional disunity. The green transition is impeded by persistent disparities, inadequate investment in innovation, and a lack of competence to implement global environmental policies locally.

The study highlights that the issue lies not in a deficiency of ecological potential, but in the enduring presence of extractivist economic models and governance frameworks that hinder revolutionary change. The perpetuation of the "resource curse" under environmentally friendly claims exacerbates dependency and inequality, unless accompanied by intentional institutional reforms, coordinated policy measures, and inclusive governance.

REFERENCES

Adom, R. K., Simatele, M. D., & Reid, M. (2022). Addressing the challenges of water-energy-food nexus programme in the context of sustainable development and climate change in South Africa. *Journal of Water and Climate Change*, 13(7), 2761–2779. <https://doi.org/10.2166/wcc.2022.099>

Ali, E. B., Shayanmehr, S., Radmehr, R., Amfo, B., Awuni, J. A., Gyamfi, B. A., & Agbozo, E. (2023). Exploring the impact of economic growth on environmental pollution in South American countries: how does renewable energy and globalization matter? *Environmental Science and Pollution Research*, 30(6), 15505–15522. <https://doi.org/10.1007/s11356-022-23177-4>

B. Miles, M., Huberman, A. M., & Saldaña, J. (2014). *Qualitative Data Analysis: A Methods Sourcebook* (Third Edit). SAGE Publications Inc.

Babafemi, O. P., Ajani, T. F., Binuyo, M. O., Ajagbe, A. O., Owonibi, S. K., & Ogwu, M. C. (2024). Biomonitoring for Sustainable Development. In *Biomonitoring of Pollutants in the Global South* (pp. 191–239). Springer Nature. https://doi.org/10.1007/978-981-97-1658-6_6

Banerjee, A. N., & Banik, N. (2018). Political economy of resources and infrastructure in India. In *Changing the Indian Economy: Renewal, Reform and Revival* (pp. 1–19). Elsevier. <https://doi.org/10.1016/B978-0-08-102005-0.00001-0>

Barua, S., & Aziz, S. (2021). Making green finance work for the sustainable energy transition in emerging economies. In *Energy-Growth Nexus in an Era of Globalization* (pp. 353–382). Elsevier. <https://doi.org/10.1016/B978-0-12-824440-1.00014-X>

Bergius, M., & Buseth, J. T. (2019). Towards a green modernization development discourse: The new green revolution in Africa. *Journal of Political Ecology*, 26(1), 57–83. <https://doi.org/10.2458/v26i1.22862>

Boubaker, S., & Omri, A. (2022). How does renewable energy contribute to the growth versus environment debate? *Resources Policy*, 79. <https://doi.org/10.1016/j.resourpol.2022.103045>

Brown, E., Cloke, J., Gent, D., Johnson, P. H., & Hill, C. (2014). Green growth or ecological commodification: Debating the green economy in the global south. *Geografiska Annaler, Series B: Human Geography*, 96(3), 245–259. <https://doi.org/10.1111/geob.12049>

Bullard, N., & Müller, T. (2012). Beyond the green economy: System change, not climate change. *Development*, 55(1), 54–62. <https://doi.org/10.1057/dev.2011.100>

Cao, L., Jin, D., Gu, M., & Wang, C. (2024). Direct and indirect influence of natural resources and regional integration on green growth: Exploring the role of political risk in South Asia. *Resources Policy*, 89. <https://doi.org/10.1016/j.resourpol.2023.104581>

Cerbaro, M., Morse, S., Murphy, R., Lynch, J., & Griffiths, G. (2020). Information from Earth Observation for the management of sustainable land use and land cover in Brazil: An analysis of user needs. *Sustainability (Switzerland)*, 12(2). <https://doi.org/10.3390/su12020489>

Chaudhari, S. K. (2021). Soil and Water Management in India: Challenges and Opportunities. In *Soil Science: Fundamentals to Recent Advances* (pp. 751–764). Springer Nature. https://doi.org/10.1007/978-981-16-0917-6_37

Chen, Z., Awan, U., Nassani, A. A., Al-Aiban, K. M., & Zaman, K. (2025). Enhancing sustainable growth in the global south: The role of mineral resource management, supply chain efficiency, technology advancement, and local downstream processing. *Resources Policy*, 100. <https://doi.org/10.1016/j.resourpol.2024.105451>

Dejonghe, M., & Van de Graaf, T. (2025). Green colonialism or green transformation? The equity implications of clean hydrogen trade. *Political Geography*, 120. <https://doi.org/10.1016/j.polgeo.2025.103338>

Deng, W., Akram, R., & Mirza, N. (2022). Economic performance and natural resources: Evaluating the role of economic risk. *Resources Policy*, 78. <https://doi.org/10.1016/j.resourpol.2022.102840>

Dong, H., Tao, M., Wen, L., Poletti, S., & Sheng, M. S. (2024). Does natural resource dependence restrict green development? An investigation from the “Belt and road” countries. *Environmental Research*, 255. <https://doi.org/10.1016/j.envres.2024.119108>

Doyle, T., & Doherty, B. (2006). Green public spheres and the green governance state: The politics of emancipation and ecological conditionality. *Environmental Politics*, 15(5), 881–892. <https://doi.org/10.1080/09644010600937504>

Dutra, D. J., Silveira, M. V. F., Mataveli, G., Ferro, P. D., Magalhães, D. D. S., de Medeiros, T. P., Anderson, L. O., & Aragão, L. E. O. E. C. D. (2024). Challenges for reducing carbon

emissions from Land-Use and Land Cover Change in Brazil. *Perspectives in Ecology and Conservation*, 22(3), 213–218. <https://doi.org/10.1016/j.pecon.2024.04.004>

Dyer, H. (2011). Eco-imperialism: Governance, resistance, hierarchy. *Journal of International Relations and Development*, 14(2), 186–212. <https://doi.org/10.1057/jird.2011.2>

Elbra, A. D. (2013). The forgotten resource curse: South Africa's poor experience with mineral extraction. *Resources Policy*, 38(4), 549–557. <https://doi.org/10.1016/j.resourpol.2013.09.004>

Falayi, M., Gambiza, J., & Schoon, M. (2021). A scoping review of environmental governance challenges in southern Africa from 2010 to 2020. *Environmental Conservation*, 48(4), 235–243. <https://doi.org/10.1017/S0376892921000333>

Favareto, A. (2021). The 2030 Agenda, the Territorial Dimension of Brazilian Development and the Drivers of Sustainability Transition. In *Sustainable Development Goals Series: Vol. Part F2664* (pp. 123–134). Springer. https://doi.org/10.1007/978-3-030-56096-6_10

Ferreira, S. C. G., de Lima, A. M. M., & Corrêa, J. A. M. (2020). Indicators of hydrological sustainability, governance and water resource regulation in the Moju river basin (PA) – Eastern Amazonia. *Journal of Environmental Management*, 263. <https://doi.org/10.1016/j.jenvman.2020.110354>

Fevereiro, J. B. R. T., & Lowe, B. H. (2025). Macroeconomic implications for the Global South of a green transition in the Global North. *Ecological Economics*, 237. <https://doi.org/10.1016/j.ecolecon.2025.108691>

Fevrier, K. (2022). Informal Waste Recycling Economies in the Global South and the Chimera of Green Capitalism. *Antipode*, 54(5), 1585–1606. <https://doi.org/10.1111/anti.12841>

Götz, G., & Schäffler, A. (2015). Conundrums in implementing a green economy in the Gauteng City-Region. *Current Opinion in Environmental Sustainability*, 13, 79–87. <https://doi.org/10.1016/j.cosust.2015.02.005>

Graham, C. C. (2025). From ideologies to practice: A political ecology approach to green transitions—The case of Tanzania's Ujamaa sustainability communities. *World Development Sustainability*, 6. <https://doi.org/10.1016/j.wds.2025.100217>

Grant, R., Carmody, P., & Murphy, J. T. (2020). A green transition in South Africa? Sociotechnical experimentation in the Atlantis Special Economic Zone. *Journal of Modern African Studies*, 58(2), 189–211. <https://doi.org/10.1017/S0022278X20000208>

Han, Y., Li, X., Zhang, Y., & Goi, N. (2025). Balancing economic growth and ecological sustainability: Factors affecting the development of renewable energy in developing countries. *International Journal of Hydrogen Energy*, 116, 601–612. <https://doi.org/10.1016/j.ijhydene.2025.02.277>

Haque, M. A., Aktar, H., & Masrur, H. R. (2025). Political influences on environmental movements in the context of climate change in Bangladesh. *GeoJournal*, 90(4). <https://doi.org/10.1007/s10708-025-11421-6>

Hassan, S. U., Basumatary, J., & Mishra, B. (2025). Role of Governance, Resource Rents, and Economic Complexity in Economic Growth: A BRICS Analysis. *Journal of Public Affairs*, 25(3). <https://doi.org/10.1002/pa.70058>

Herman, K. S. (2023). Green growth and innovation in the Global South: a systematic literature review. *Innovation and Development*, 13(1), 43–69. <https://doi.org/10.1080/2157930X.2021.1909821>

Iyiola, A. O., Akingba, O. O., Alimi, S. K., Akinsorotan, A. M., Osei, S. A., Idowu, C. F., Izah, S. C., & Ogwu, M. C. (2025). Impact Assessment of Biobased Products in the Global South. In *Sustainable Bioeconomy Development in the Global South: Volume II Bioeconomy Techniques* (pp. 431–453). Springer Science+Business Media. https://doi.org/10.1007/978-981-96-0305-3_16

Iyiola, A. O., & Ogwu, M. C. (2025). Environmental Management Using Renewable Biological Resources in the Global South. In *Sustainable Bioeconomy Development in the Global South: Volume II Bioeconomy Techniques* (pp. 299–323). Springer Science+Business Media. https://doi.org/10.1007/978-981-96-0305-3_11

Kararach, G. (2024). South Africa: Economic policies to promote equality and achieve high-income status. In *Avoiding the Middle-Income Trap in Africa: Economic Challenges and Policy Responses* (pp. 123–168). Springer Nature. https://doi.org/10.1007/978-3-031-69248-2_5

Kgoale, P. T., & Odeku, K. O. (2019). Transformative mineral resources beneficiation intervention fostering local entrepreneurship in South Africa. *Academy of Entrepreneurship Journal*, 25(2). <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072152062&partnerID=40&md5=ce6458dde1fcbb5a0e3057b3ed47a388>

La Rovere, E. L. (2020). The potential contribution of emerging economies to stop dangerous climate change. The case of Brazil. *Wiley Interdisciplinary Reviews: Climate Change*, 11(1). <https://doi.org/10.1002/wcc.614>

Laumanns, U., Reiche, D., & Bechberger, M. (2004). Renewable energies in developing countries: Issues, interests, and implications. *Energy and Environment*, 15(4), 731–741. <https://doi.org/10.1260/0958305042259774>

Li, F., Zhang, J., & Li, X. (2022). Research on supporting developing countries to achieve green development transition: Based on the perspective of renewable energy and foreign direct investment. *Journal of Cleaner Production*, 372. <https://doi.org/10.1016/j.jclepro.2022.133726>

Li, T., Yue, X.-G., Waheed, H., & Yıldırım, B. (2023). Can energy efficiency and natural resources foster economic growth? Evidence from BRICS countries. *Resources Policy*, 83. <https://doi.org/10.1016/j.resourpol.2023.103643>

Liphadzi, S., Mpandeli, S., Svinurai, W., Marumure, J., & Nhamo, L. (2024). Pathways to Enhance the Adaptive Capacity and Resilience to Climate Change in Southern Africa. In *Sustainable Development Goals Series: Vol. Part F3958* (pp. 49–64). Springer. https://doi.org/10.1007/978-3-031-73600-1_4

MacArthur, J. L., Hoicka, C. E., Castleden, H., Das, R., & Lieu, J. (2020). Canada's Green New Deal: Forging the socio-political foundations of climate resilient infrastructure? *Energy Research and Social Science*, 65. <https://doi.org/10.1016/j.erss.2020.101442>

Manju, S., & Sagar, N. (2017). Progressing towards the development of sustainable energy: A critical review on the current status, applications, developmental barriers and prospects of

solar photovoltaic systems in India. *Renewable and Sustainable Energy Reviews*, 70, 298–313. <https://doi.org/10.1016/j.rser.2016.11.226>

Mdluli, T. N., & Vogel, C. H. (2010). Challenges to achieving a successful transition to a low carbon economy in South Africa: Examples from poor urban communities. *Mitigation and Adaptation Strategies for Global Change*, 15(3), 205–222. <https://doi.org/10.1007/s11027-009-9195-4>

Meena, B. S., Kishor, K., Kumari, S., & Gautam, P. (2017). Resource conservation techniques in crop production. *Water and Energy International*, 60(RNI9), 63–66. <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041332361&partnerID=40&md5=9fa3fb566084d40ba2f5d9d338cc5e1b>

Meissner, H. H., Scholtz, M. M., & Palmer, A. R. (2013). Sustainability of the South African livestock sector towards 2050 Part 1: Worth and impact of the sector. *South African Journal of Animal Science*, 43(3), 282–297. <https://doi.org/10.4314/sajas.v43i3>.

Mohamad, A. H. H. B., & Ab-Rahim, R. (2024). Do the various sources of energy consumption affect the environmental degradation in India? *International Journal of Renewable Energy Development*, 13(2), 168–178. <https://doi.org/10.61435/ijred.2024.55836>

Mohamed, N. (2018). Sustainability transitions in South Africa. In *Sustainability Transitions in South Africa*. Taylor and Francis. <https://doi.org/10.4324/9781315190617>

Mondal, S., Mondal, A., Rathore, J., Koundinya, K. K., & Sharma, A. K. (2024). India's shift toward sustainable energy: A comprehensive approach to renewable energy integration and environmental sustainability. *Journal of Renewable and Sustainable Energy*, 16(4). <https://doi.org/10.1063/5.0220054>

Mpuure, D. M.-N., & Mengba, J. D. (2024). Natural resource dependence, policy and institutions for environmental sustainability and African welfare. *Sustainable Development*, 32(3), 2176–2193. <https://doi.org/10.1002/sd.2752>

Murshed, M. (2024). Can resolving geopolitical tensions help South Asian countries elude the carbon curse of natural resources? *Resources Policy*, 90. <https://doi.org/10.1016/j.resourpol.2024.104830>

Naz, S., Sultan, R., Zaman, K., Aldakhil, A. M., Nassani, A. A., & Abro, M. M. Q. (2019). Moderating and mediating role of renewable energy consumption, FDI inflows, and economic growth on carbon dioxide emissions: evidence from robust least square estimator. *Environmental Science and Pollution Research*, 26(3), 2806–2819. <https://doi.org/10.1007/s11356-018-3837-6>

Ogwu, M. C., Iyiola, A. O., Fawole, W. O., & Izah, S. C. (2025). Biobased Resource Recovery Techniques in the Global South. In *Sustainable Bioeconomy Development in the Global South: Volume II Bioeconomy Techniques* (pp. 455–484). Springer Science+Business Media. https://doi.org/10.1007/978-981-96-0305-3_17

Oliveira, P. T. S., de Faria Godoi, R., Colman, C. B., Motta, J. S., Sone, J. S., & Almagro, A. (2023). Agricultural Land Degradation in Brazil. In *Handbook of Environmental Chemistry* (Vol. 120, pp. 97–127). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/698_2022_923

Pettifor, A. (2022). THE GREEN NEW DEAL, CLIMATE BREAKDOWN, AND POWER.

In *Routledge Handbook on the Green New Deal* (pp. 23–34). Taylor and Francis. <https://doi.org/10.4324/9781003110880-3>

Phillips, R. K., & Grubert, E. (2011). Water and deforestation in Brazil: Future challenges for policy implementation. *World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability - Proceedings of the 2011 World Environmental and Water Resources Congress*, 1247–1256. [https://doi.org/10.1061/\(41173\)\(414\)129](https://doi.org/10.1061/(41173)(414)129)

Ronquest, M. (2012). The business case for sustainable finance in South Africa. In *The Business Case for Sustainable Finance* (pp. 134–147). Taylor and Francis. <https://doi.org/10.4324/9780203111307-19>

Rootes, C. (2006). Facing south? British environmental movement organisations and the challenge of globalisation. *Environmental Politics*, 15(5), 768–786. <https://doi.org/10.1080/09644010600937207>

Rovinskaya, T. L. (2015). Greens in Europe: Incremental growth. *World Economy and International Relations*, 59(12), 58–71. <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85033680411&partnerID=40&md5=c56be255b46615b941355ffedf8aac0b>

Samal, S. K. (2019). Revolution of green economy for the sustainable development of neoliberal capitalism. *International Journal of Psychosocial Rehabilitation*, 23(6), 639–645. <https://doi.org/10.37200/IJPR/V23I6/PR190821>

Santa Rita, L. P., Ramos Filho, J. R. B., da Silva, E. M., da Silva, B. A., Balliano, T. L., de Oliveira, W. S., de Sousa Oliveira, R., Silva, J. R., & Lima, C. P. (2025). Strategies for Bioeconomy Development: Insights into Brazil's New Industrial Policy. In T. E.L.S. (Ed.), *Springer Proceedings in Business and Economics* (pp. 111–121). Springer Nature. https://doi.org/10.1007/978-3-031-86660-9_9

Shaw, T. M. (2015). African agency? Africa, South Africa and the BRICS. *International Politics*, 52(2), 255–268. <https://doi.org/10.1057/ip.2014.48>

Smith, J. (2014). Counter-hegemonic networks and the transformation of global climate politics: Rethinking movement-state relations. *Global Discourse*, 4(2–3), 120–138. <https://doi.org/10.1080/23269995.2013.874111>

Smith, J. (2016). Counter-hegemonic networks and the transformation of global climate politics: Rethinking movement-state relations. In *Protest - Analysing Current Trends* (pp. 12–30). Taylor and Francis Inc. <https://www.scopus.com/inward/record.uri?eid=2-s2.0-84979901479&partnerID=40&md5=ef8918aca8c72bab688376c27461b72f>

Volpi, G., Jannuzzi, G., Dourado, R., & Gomes, M. (2006). A sustainable electricity blueprint for Brazil. *Energy for Sustainable Development*, 10(4), 14–24. [https://doi.org/10.1016/S0973-0826\(08\)60552-9](https://doi.org/10.1016/S0973-0826(08)60552-9)

Wanner, T. (2015). The New 'Passive Revolution' of the Green Economy and Growth Discourse: Maintaining the 'Sustainable Development' of Neoliberal Capitalism. *New Political Economy*, 20(1), 21–41. <https://doi.org/10.1080/13563467.2013.866081>

Winkler, H., & Marquand, A. (2009). Changing development paths: From an energy-intensive to low-carbon economy in South Africa. *Climate and Development*, 1(1), 47–65. <https://doi.org/10.3763/cdev.2009.0003>

Yang, J., & Koondhar, M. A. (2024). Impact of mineral based social equity on unearthing inequities: A longitudinal analysis of environmental and social equity of mineral exploitation in the global south. *Journal of Environmental Management*, 365. <https://doi.org/10.1016/j.jenvman.2024.121492>

Yang, X., Liu, X., Ran, Q., & Razzaq, A. (2023). How does natural resource dependence influence industrial green transformation in China? Appraising underlying mechanisms for sustainable development at regional level. *Resources Policy*, 86. <https://doi.org/10.1016/j.resourpol.2023.104191>

Yu, Z., Youn, I. J., Alessa, N., & Borgi, H. (2023). Does natural-resource-dependency create the need of green innovation? *Resources Policy*, 85. <https://doi.org/10.1016/j.resourpol.2023.103946>

Zeng, B., Fahad, S., Bai, D., Zhang, J., & İşik, C. (2023). Assessing the sustainability of natural resources using the five forces and value chain combined models: The influence of solar energy development. *Resources Policy*, 86. <https://doi.org/10.1016/j.resourpol.2023.104079>

Zhao, L., & Rasoulinezhad, E. (2023). Role of natural resources utilization efficiency in achieving green economic recovery: Evidence from BRICS countries. *Resources Policy*, 80. <https://doi.org/10.1016/j.resourpol.2022.103164>